
Robotics Service Bus - Enhancement #421
Use Sequence Numbers in Events (instead of full UUIDs)
07/14/2011 06:37 PM - J. Moringen

Status: Resolved Start date: 07/14/2011
Priority: Urgent Due date:
Assignee: S. Wrede % Done: 100%
Category: Protocol Estimated time: 0.00 hour
Target version: 0.4
Description

Proposal (original idea: Stefan Herbrechtsmeier):
Change Notification.id (which currently is a UUID) to a sequence number
Implementation:
 - Change Protocol.proto
 - Change Notification.id -> Notification.sequence_number ✓
 - Move MetaData.sender_id -> Notification.sender_id ✓
 - Generate sequence numbers in participants
 - Probably needs atomic integer increment in the participant - locking is probably worse than UUIDs
 - C++ (✓) atomicity is currently not guaranteed
 - Python ✓
 - Java ✓
 - Common Lisp ✓
 - Implement lazy UUID computation (e.g with v3 UUID, namespace: participant id, name: event sequence number)
 - C++ ✓
 - Python ✓
 - Java ✓
 - Common Lisp ✓
 - Update [[Events|specification]] ✓
Open Questions:
 - Which integer width is required to prevent overflows?
 - Are overflows acceptable?

See: [[Meetings2011-07-14#Event-Sequence-Numbers-Stefan]]

Associated revisions
Revision 0c9dcab8 - 07/20/2011 07:03 AM - J. Moringen
Changed id to sequence number in RSBProtocol/Protocol.proto
refs #421
 - RSBProtocol/Protocol.proto: change bytes Notification.id -> uint32

 Notification.sequence_number

Revision a5c3932a - 07/20/2011 07:12 AM - J. Moringen
Changed events to use sequence numbers and only derive UUIDs
refs #421
 - src/rsb/Event.{h,cpp}: changed Event::id into a pointer which is not

 set initially, but computed lazily; added Event::sequenceNumber
 - src/rsb/Informer.h: set event sequence number in

 Informer::checkedPublish; added sequence number counter WHICH IS NOT
 YET THREAD-SAFE

 - src/rsb/transport/spread/Assembly.{h,cpp}: use sequence numbers

05/14/2024 1/7

 instead of ids to identify corresponding events of notifications
 - src/rsb/transport/spread/OutConnector.cpp: store event sequence

 number instead of id in notification
 - src/rsb/transport/spread/ReceiverTask.cpp: extract event sequence

 number instead of id from notification
 - test/rsb/transport/spread/AssemblyTest.cpp: adapted created of mock

 notifications

Revision 5e8072c8 - 07/20/2011 12:32 PM - J. Moringen
Fixed event id computation in src/rsb/Event.cpp
refs #421
 - src/rsb/Event.cpp: added missing zero-padding when computing name

 component for UUID v5 generation

Revision 3c27217f - 07/20/2011 07:15 PM - J. Moringen
Moved sender_id to Notification in RSBProtocol/Protocol.proto
refs #421
 - RSBProtocol/Protocol.proto: moved MetaData.sender_id to

 Notification.sender_id; sequence_number and sender_id uniquely
 identify the event; both are still available even if
 Notification.meta_data is omitted (this is relevant for fragmented
 events)

Revision 403b89ed - 07/21/2011 09:03 AM - J. Moringen
Adapted to changed Notification protocol buffer message definition
refs #421
 - src/rsb/transport/spread/OutConnector.cpp: store sender id in

 directly in notification object rather than meta data object
 - src/rsb/transport/spread/ReceiverTask.cpp: extract sender id from

 Notification object rather than meta data object

Revision f9d4be78 - 07/23/2011 11:00 PM - J. Moringen
Use sender id + seq num in src/rsb/transport/spread/Assembly.{h,cpp}
refs #421
 - src/rsb/transport/spread/Assembly.{h,cpp}: use the concatenation of

 sender id and event sequence number as unique event identifier

Revision 6cf52a13 - 07/23/2011 11:19 PM - J. Moringen
Added sequence number type and generation in src/{types,util}.lisp
refs #421
 - src/util.lisp (make-sequence-number-generator): new function;

 returns a function which return sequence numbers in a thread-safe
 way

 - src/types.lisp (sequence-number): new type; 32-bit unsigned integer
 used for sequence numbers

 - src/package.lisp (package rsb): added exported symbol
 sequence-number

 - cl-rsb.asd (system cl-rsb): added dependency of src/util.lisp on

05/14/2024 2/7

 src/types.lisp

Revision fe660653 - 07/23/2011 11:19 PM - J. Moringen
Use sequence numbers in events; compute event ids only when needed
refs #421
 - src/event.lisp (event): removed superclass uuid-mixin; updated

 documentation
 (event::sequence-number): new slot; stores a sequence number
 (event::id): made writer private; allow nil value; added
 documentation
 (shared-initialize :after event t): invalid stored id
 (event-id :before event): compute event id by calling
 `%maybe-set-event-id'
 (setf event-sequence-number :after t event): new method; invalidate
 stored id
 (setf event-origin :after t event): likewise
 (event=): changed keyword parameter compare-id? ->
 compare-sequence-numbers?
 (print-object event t): call `%maybe-set-event-id' to force id
 computation if necessary
 (%maybe-set-event-id): new function; helper function to compute
 event id based on origin id and sequence number

 - src/informer.lisp (informer::sequence-number-generator): new slot;
 stores a sequence number generation function
 (send informer event): call the sequence number generator and store
 the resulting sequence number in the event

 - src/transport/spread/conversion.lisp (one-notification->event):
 extract the sequence number instead of the id from the notification
 (event->notifications): store the sequence number instead of the id
 (make-notification): likewise

 - cl-rsb.asd (system cl-rsb): added dependency of src/event.lisp on
 src/types.lisp

Revision 299abb67 - 07/23/2011 11:19 PM - J. Moringen
Adapted unit test for event changes in test/{event,package}.lisp
refs #421
 - src/package.lisp (package rsb): added exported symbol

 event-sequence-number
 - test/package.lisp (test suite root): in local function

 `'check-event', allow event-id to be nil
 - test/event.lisp (test event-root::comparison): adapted to changed

 interface of `event='; construct events without delay since UUIDs
 are no longer involved

Revision c667a44e - 07/23/2011 11:19 PM - J. Moringen
Changed id -> seq. num. in src/transport/spread/fragmentation.lisp
refs #421
 - src/transport/spread/fragmentation.lisp (assembly::id): changed type

 octet-vector -> sequence-number
 (print-object assembly t): print id as sequence number rather than

05/14/2024 3/7

 partial UUID
 (ensure-assembly assembly-pool integer integer): changed specializer
 simple-array -> integer
 (merge-fragment assembly-pool t): identify the notification using
 `notification-sequence-number'; `notification-id' has been removed

Revision 92d85e4a - 07/23/2011 11:19 PM - J. Moringen
Adjusted tests in test/transport/spread/fragmentation.lisp
refs #421
 - test/transport/spread/fragmentation.lisp

 (test suite fragmentation-root): in local function
 `make-notification', use sequence numbers instead of ids
 (test fragmentation-root::assemble-smoke): likewise
 (test fragmentation-root::roundtrip): likewise
 (test fragmentation-root::warnings): likewise
 (test pruning-assembly-pool-root::prune): likewise

Revision edee9977 - 07/23/2011 11:19 PM - J. Moringen
Adapted sender-id handling in src/transport/spread/conversion.lisp
refs #421
 - src/transport/spread/conversion.lisp (one-notification->event):

 obtain sender id from notification instance rather than contained
 meta-data instance
 (make-notification): store sender id in notification instance rather
 than contained meta-data instance

Revision 09def042 - 07/23/2011 11:19 PM - J. Moringen
Fixed sender id extraction in src/transport/spread/conversion.lisp
refs #421
 - src/transport/spread/conversion.lisp (one-notification->event):

 extract sender id from notification, not meta-data

Revision d958b35c - 07/23/2011 11:19 PM - J. Moringen
Added test case event-root::id-computation in test/event.lisp
refs #421
 - test/event.lisp (test event-root::id-computation): new test case;

 check computation of event ids based on sender ids and sequence
 numbers

Revision 70c0c617 - 07/26/2011 03:00 AM - J. Moringen
Initial attempt to adapt Python impl to changed protocol
refs #421, #356
 - rsb/__init__.py: added sequenceNumber and senderId to Event class;

 Event.id is now read-only and lazily computed from sequenceNumber
 and senderId; removed senderId from MetaData class; added
 sequenceNumber counter to Informer class

 - rsb/rsbspread/__init__.py: handle sequenceNumber and senderId
 according to above changes

05/14/2024 4/7

 - test/coretest.py: test Event and MetaData classes according to above
 changes

 - test/eventprocessingtest.py: when creating Event instances for
 tests, supply sequence number and sender id

 - test/rsbspreadtest.py: likewise

Revision 37849611 - 07/26/2011 03:41 AM - J. Moringen
Fixed notification ids in src/transport/spread/fragmentation.lisp
refs #421
 - src/transport/spread/fragmentation.lisp (assembly::id): changed type

 sequence-number -> simple-array
 (print-object assembly t): print parts of the sender id and the
 complete sequence number
 (ensure-assembly assembly-pool simple-array integer): changed
 specializer integer -> simple-array
 (merge-fragment assembly-pool t): use `%make-key' to compute
 suitable keys for identifying notifications
 (%make-key): new function; compute a notification key from a
 sequence number and a sender id

Revision 018c8169 - 08/02/2011 02:19 AM - J. Moringen
Initial attempt to adapt Java implementation to changed protocol
refs #356, #421
 - src/rsb/Event.java: Event.id defaults to null and is computed

 lazily; the id should be computed as described in
https://code.cor-lab.org/projects/rsb/wiki/Events, but I could not
 find an UUID v5 for Java; as best-effort compromise, the sender id
 is used for now

 - src/rsb/transport/spread/ReceiverTask.java: adapted deserialization
 to changed protocol

 - src/rsb/transport/spread/SpreadPort.java: likewise for serialization
 - test/rsb/EventTest.java: removed id-based assertions since the event

 id is no longer used in event comparison logic
 - test/rsb/converter/ProtocolBufferConverterTest.java: removed

 id-based assertions since the event id is a computed attribute now
 - test/rsb/filter/ScopeFilterTest.java: set sender id in Event objects

 to allow event id computation
 - test/rsb/transport/spread/SpreadPortRoundtripTest.java: set sequence

 number of events instead of id
 - test/rsb/transport/spread/SpreadPortTest.java: likewise

Revision 9d34baca - 08/05/2011 04:24 PM - S. Wrede

Support for name-based UUIDs according to Version 5 specifcation for EventIds (this fixes #421).
Id class refactored to EventId
Added UUIDTools class for UUID related helper functions.
Removed ControversialRules from PMD ruleset.

History

05/14/2024 5/7

https://code.cor-lab.org/projects/rsb/wiki/Events

#1 - 07/15/2011 11:00 PM - J. Moringen
- Description updated

#2 - 07/18/2011 12:46 AM - J. Moringen
- Description updated
- Assignee deleted (J. Wienke)

#3 - 07/18/2011 12:46 AM - J. Moringen
- Description updated

#4 - 07/19/2011 09:22 AM - J. Moringen
- Priority changed from Low to Urgent

#5 - 07/19/2011 09:24 AM - J. Moringen
- Status changed from New to In Progress
- Assignee set to J. Moringen

#6 - 07/19/2011 10:58 AM - S. Herbrechtsmeier

Overflows shouldn`t be a problem if the message contains a CreateTime. If it can be ensured that the CreateTime always differ between two following
messages from one participant the SequenceNumber can be omitted and replaced by a requirement for the CreateTime. Maybe the CreateTime
should be moved from the Meta-Data to the main components of the event message.

#7 - 07/20/2011 04:19 AM - J. Moringen
- Description updated

#8 - 07/20/2011 04:25 AM - J. Moringen

We probably can't ensure strictly increasing creation times when relying on the respective operating system's clock and storing timestamps with
microsecond accuracy. Using timestamps would be nice since it would avoid locking and other kinds of threading issues. I think, it's easier to go with
the sequence number approach for now.

#9 - 07/20/2011 07:22 AM - J. Moringen
- Description updated
- % Done changed from 0 to 30

#10 - 07/20/2011 11:59 AM - J. Moringen
- Description updated

#11 - 07/20/2011 07:07 PM - J. Moringen
- Description updated

#12 - 07/20/2011 07:15 PM - J. Moringen
- Description updated

#13 - 07/21/2011 08:06 AM - J. Moringen
- Description updated
- % Done changed from 30 to 60

#14 - 07/25/2011 06:13 PM - S. Wrede
- Target version changed from rsb-0.10 to 0.4

05/14/2024 6/7

#15 - 07/26/2011 03:03 AM - J. Moringen
- Description updated
- % Done changed from 60 to 80

#16 - 07/26/2011 03:04 AM - J. Moringen
- Assignee changed from J. Moringen to S. Wrede

#17 - 08/03/2011 02:01 PM - S. Wrede
- % Done changed from 80 to 90

Final changes (almost 95%) done:
 - Informer now generates sequence numbers correctly upon sending of events.
 - Event class has been changed to reflect the structural changes which means the senderId and sequenceNumber are now attributes of Event.
 - ReceiverTask now correctly deserializes and instantiates sequence numbers.
 - SequenceNumber class implements a Protocol Buffer unsigned 32bit integer type.
 - Id represents now an event id, original Id was refactored to ParticipantId to make the difference clear.

What is still missing is a correct implmentation of the uuid computation from sequenceNumber and participant id. Still, r2242 reestablishes
communication compatibility between trunk versions.

#18 - 08/03/2011 02:02 PM - S. Wrede
- Description updated

#19 - 08/05/2011 04:26 PM - S. Wrede
- Status changed from In Progress to Resolved
- % Done changed from 90 to 100

Feature implemented in r2261. EventId now has a getAsUUID method which computes a V5 UUID on demand if not done perviously.

This was a particularly educating issue... ;-)

#20 - 08/05/2011 04:26 PM - S. Wrede
- Description updated

05/14/2024 7/7

