
NemoMath - Feature #821
Allow optional 'abort-on-error' instead of exception
01/23/2012 03:49 PM - M. Rolf

Status: Resolved Start date: 01/23/2012
Priority: Normal Due date:
Assignee: M. Rolf % Done: 100%
Category: Estimated time: 0.00 hour
Target version: NemoMath 0.4
Description

Benchmarked operator[] and *begin() for both read and write operations on revision @191 on malachit with GCC 4.4.3

When throwing exception on 'array out of range':

BenchCase: "VectorCreateOperatorRead"
 Estimated cost per operation: 0.00637619 microseconds
BenchCase: "VectorCreateOperatorReadConst"
 Estimated cost per operation: 0.000708122 microseconds
BenchCase: "VectorCreateOperatorWrite"
 Estimated cost per operation: 0.00803425 microseconds
BenchCase: "VectorCreateIteratorRead"
 Estimated cost per operation: 0.00070811 microseconds
BenchCase: "VectorCreateIteratorWrite"
 Estimated cost per operation: 0.00283319 microseconds

The same benchmark, when calling 'abort' on 'array out of range':

BenchCase: "VectorCreateOperatorRead"
 Estimated cost per operation: 0.000708186 microseconds
BenchCase: "VectorCreateOperatorReadConst"
 Estimated cost per operation: 0.000708156 microseconds
BenchCase: "VectorCreateOperatorWrite"
 Estimated cost per operation: 0.00283341 microseconds
BenchCase: "VectorCreateIteratorRead"
 Estimated cost per operation: 0.00070805 microseconds
BenchCase: "VectorCreateIteratorWrite"
 Estimated cost per operation: 0.00283317 microseconds

Non-const operator[] read shows factor 9 speedup, operator[] write factor 3.
In contrast, GCC 4.6.1 shows almost no difference: All costs are on the low level of IteratorRead/Write, except a marginal increase of
runtime in "VectorCreateOperatorWrite".

It seems that the older GCC largely benefit from a never-returning error mechanism.
Allow to use abort-on-error using a compiler-flag...

History
#1 - 01/15/2013 05:51 PM - M. Rolf

04/26/2024 1/3

- Status changed from New to In Progress

#2 - 01/16/2013 01:39 PM - M. Rolf
- % Done changed from 0 to 50

#3 - 01/18/2013 04:59 PM - M. Rolf
- Status changed from In Progress to Resolved
- % Done changed from 50 to 100

Implemented new CMake option ABORT_ON_ERROR (false by default), which activates the compile-time definition -DNEMO_ABORT_ON_ERROR.

When enabled, all exceptions (for example when an index is out of range when accessing a MathVector) are replaced by an error message posted to
std::cerr, and an abort()-call which stops the entire program.

Benchmarks with ABORT_ON_ERROR=false (default):

Benchsuite [MathVectorAccess]
 Performing each case 1000000000 times with operation-size 10
 Benchcase [MathVectorAccess:OperatorRead]
 Estimated cost per operation: 0.00699068 us
 Benchcase [MathVectorAccess:OperatorReadConst]
 Estimated cost per operation: 0.00104675 us
 Benchcase [MathVectorAccess:OperatorWrite]
 Estimated cost per operation: 0.00959644 us
 Benchcase [MathVectorAccess:IteratorRead]
 Estimated cost per operation: 0.00070806 us
 Benchcase [MathVectorAccess:IteratorWrite]
 Estimated cost per operation: 0.00283256 us
Benchsuite [MatrixAccess]
 Performing each case 1000000000 times with operation-size 10
 Benchcase [MatrixAccess:OperatorRead]
 Estimated cost per operation: 0.00596268 us
 Benchcase [MatrixAccess:OperatorReadConst]
 Estimated cost per operation: 0.00597869 us
 Benchcase [MatrixAccess:OperatorWrite]
 Estimated cost per operation: 0.00710284 us
 Benchcase [MatrixAccess:IteratorRead]
 Estimated cost per operation: 0.00105505 us
 Benchcase [MatrixAccess:IteratorWrite]
 Estimated cost per operation: 0.00292096 us

Benchmarks with ABORT_ON_ERROR=true (some cases x10 faster, due to aggressive optimization of never-returning error-handling):

Benchsuite [MathVectorAccess]
 Performing each case 1000000000 times with operation-size 10
 Benchcase [MathVectorAccess:OperatorRead]
 Estimated cost per operation: 0.000708147 us
 Benchcase [MathVectorAccess:OperatorReadConst]
 Estimated cost per operation: 0.00106242 us
 Benchcase [MathVectorAccess:OperatorWrite]

04/26/2024 2/3

 Estimated cost per operation: 0.00283296 us
 Benchcase [MathVectorAccess:IteratorRead]
 Estimated cost per operation: 0.000708058 us
 Benchcase [MathVectorAccess:IteratorWrite]
 Estimated cost per operation: 0.00319325 us
Benchsuite [MatrixAccess]
 Performing each case 1000000000 times with operation-size 10
 Benchcase [MatrixAccess:OperatorRead]
 Estimated cost per operation: 0.000708069 us
 Benchcase [MatrixAccess:OperatorReadConst]
 Estimated cost per operation: 0.000708512 us
 Benchcase [MatrixAccess:OperatorWrite]
 Estimated cost per operation: 0.00283275 us
 Benchcase [MatrixAccess:IteratorRead]
 Estimated cost per operation: 0.00104229 us
 Benchcase [MatrixAccess:IteratorWrite]
 Estimated cost per operation: 0.00292152 us

04/26/2024 3/3

